In this paper, we present a novel end-to-end learning-based LiDAR relocalization framework, termed PointLoc, which infers 6-DoF poses directly using only a single point cloud as input, without requiring a pre-built map. Compared to RGB image-based relocalization, LiDAR frames can provide rich and robust geometric information about a scene. However, LiDAR point clouds are unordered and unstructured making it difficult to apply traditional deep learning regression models for this task. We address this issue by proposing a novel PointNet-style architecture with self-attention to efficiently estimate 6-DoF poses from 360{\deg} LiDAR input frames.Extensive experiments on recently released challenging Oxford Radar RobotCar dataset and real-world robot experiments demonstrate that the proposedmethod can achieve accurate relocalization performance.
翻译:在本文中,我们展示了一个新的端到端学习的LIDAR重新定位框架,称为PointLoc,其中推断出6-DoF直接将单一点云直接用作输入,而不需要预先制作的地图。与RGB图像重新定位相比,LIDAR框架可以提供丰富和健全的关于一场景的几何信息。然而,LIDAR点云没有顺序,没有结构,因此难以将传统的深层学习回归模型应用到这项任务中。我们通过提出一个具有自我意识的新颖的PointNet式结构来解决这一问题,该结构能够有效估计来自360=deg}LIDAR输入框架的6-DoF。最近发布的关于挑战牛津雷达机器人机器人数据集和现实世界机器人实验的广泛实验表明,拟议方法能够实现准确的重新定位性能。