点击上方“CVer”,选择加"星标"置顶
重磅干货,第一时间送达
主要特性:
1. 快速训练和推理;
2. Anchor-free的方法;
3. 无NMS;
4. 支持分布式数据并行训练 演示Demo详见视频
项目链接:https://github.com/maudzung/SFA3D
点击下面该视频,皆可查看演示Demo
The technical details are described here
Update 2020.09.06: Add ROS
source code. The great work has been done by @AhmedARadwan. The implementation is here
The instructions for setting up a virtual environment is here.
git clone https://github.com/maudzung/SFA3D.git SFA3D
cd SFA3D/
pip install .
Download the 3D KITTI detection dataset from here.
The downloaded data includes:
Please make sure that you construct the source code & dataset directories structure as below.
To visualize 3D point clouds with 3D boxes, let's execute:
cd sfa/data_process/
python kitti_dataset.py
The pre-trained model was pushed to this repo.
python test.py --gpu_idx 0 --peak_thresh 0.2
python demo_2_sides.py --gpu_idx 0 --peak_thresh 0.2
The data for the demonstration will be automatically downloaded by executing the above command.
python train.py --gpu_idx 0
python train.py --multiprocessing-distributed --world-size 1 --rank 0 --batch_size 64 --num_workers 8
Two machines (two nodes), multiple GPUs
python train.py --dist-url 'tcp://IP_OF_NODE1:FREEPORT' --multiprocessing-distributed --world-size 2 --rank 0 --batch_size 64 --num_workers 8
python train.py --dist-url 'tcp://IP_OF_NODE2:FREEPORT' --multiprocessing-distributed --world-size 2 --rank 1 --batch_size 64 --num_workers 8
logs/
folder and
cd logs/<saved_fn>/tensorboard/
tensorboard --logdir=./
If you think this work is useful, please give me a star!
If you find any errors or have any suggestions, please contact me (Email: nguyenmaudung93.kstn@gmail.com
).
Thank you!
@misc{Super-Fast-Accurate-3D-Object-Detection-PyTorch,
author = {Nguyen Mau Dung},
title = {{Super-Fast-Accurate-3D-Object-Detection-PyTorch}},
howpublished = {\url{https://github.com/maudzung/Super-Fast-Accurate-3D-Object-Detection}},
year = {2020}
}
[1] CenterNet: Objects as Points paper, PyTorch Implementation
[2] RTM3D: PyTorch Implementation
[3] Libra_R-CNN: PyTorch Implementation
The YOLO-based models with the same BEV maps input:
[4] Complex-YOLO: v4, v3, v2
3D LiDAR Point pre-processing:
[5] VoxelNet: PyTorch Implementation
${ROOT}
└── checkpoints/
├── fpn_resnet_18/
├── fpn_resnet_18_epoch_300.pth
└── dataset/
└── kitti/
├──ImageSets/
│ ├── test.txt
│ ├── train.txt
│ └── val.txt
├── training/
│ ├── image_2/ (left color camera)
│ ├── calib/
│ ├── label_2/
│ └── velodyne/
└── testing/
│ ├── image_2/ (left color camera)
│ ├── calib/
│ └── velodyne/
└── classes_names.txt
└── sfa/
├── config/
│ ├── train_config.py
│ └── kitti_config.py
├── data_process/
│ ├── kitti_dataloader.py
│ ├── kitti_dataset.py
│ └── kitti_data_utils.py
├── models/
│ ├── fpn_resnet.py
│ ├── resnet.py
│ └── model_utils.py
└── utils/
│ ├── demo_utils.py
│ ├── evaluation_utils.py
│ ├── logger.py
│ ├── misc.py
│ ├── torch_utils.py
│ ├── train_utils.py
│ └── visualization_utils.py
├── demo_2_sides.py
├── demo_front.py
├── test.py
└── train.py
├── README.md
└── requirements.txt
项目代码下载
后台回复:SFA3D,即可下载上述项目代码
下载:CVPR / ECCV 2020开源代码
在CVer公众号后台回复:CVPR2020,即可下载CVPR 2020代码开源的论文合集
在CVer公众号后台回复:ECCV2020,即可下载ECCV 2020代码开源的论文合集
重磅!CVer-论文写作与投稿交流群成立
扫码添加CVer助手,可申请加入CVer-论文写作与投稿 微信交流群,目前已满2400+人,旨在交流顶会(CVPR/ICCV/ECCV/NIPS/ICML/ICLR/AAAI等)、顶刊(IJCV/TPAMI/TIP等)、SCI、EI、中文核心等写作与投稿事宜。
同时也可申请加入CVer大群和细分方向技术群,细分方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch和TensorFlow等群。
一定要备注:研究方向+地点+学校/公司+昵称(如论文写作+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群
▲长按加微信群
▲长按关注CVer公众号
整理不易,请给CVer点赞和在看!