In recent years, Physics-informed neural networks (PINNs) have been widely used to solve partial differential equations alongside numerical methods because PINNs can be trained without observations and deal with continuous-time problems directly. In contrast, optimizing the parameters of such models is difficult, and individual training sessions must be performed to predict the evolutions of each different initial condition. To alleviate the first problem, observed data can be injected directly into the loss function part. To solve the second problem, a network architecture can be built as a framework to learn a finite difference method. In view of the two motivations, we propose Five-point stencil CNNs (FCNNs) containing a five-point stencil kernel and a trainable approximation function for reaction-diffusion type equations including the heat, Fisher's, Allen-Cahn, and other reaction-diffusion equations with trigonometric function terms. We show that FCNNs can learn finite difference schemes using few data and achieve the low relative errors of diverse reaction-diffusion evolutions with unseen initial conditions. Furthermore, we demonstrate that FCNNs can still be trained well even with using noisy data.


翻译:近年来,物理知情神经网络(PINNs)被广泛用于解决部分差异方程,并使用数字方法解决部分差异方程,因为PINNs可以在没有观测的情况下接受培训,直接处理连续时间问题。相比之下,优化这些模型的参数是困难的,必须进行个别培训以预测每个不同初始条件的演变情况。为了缓解第一个问题,观测到的数据可以直接注入损失函数部分。为了解决第二个问题,可以建立一个网络结构,作为学习有限差异方法的框架。鉴于这两种动机,我们提议五点特南西尔CNNs(FCNNs)包含一个五点超导内核内核和反应扩散型方程式的可训练近距离功能,包括热量、Fisherals、Allen-Cahn,以及带有三角函数术语的其他反振荡方程式。我们表明,FCNNs可以利用少量数据学习有限差异方案,并实现与隐形初始条件不同反应进化的低相对差。此外,我们证明FCNNs仍然能够用高压数据培训。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
61+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月27日
Arxiv
0+阅读 · 2023年3月25日
Arxiv
23+阅读 · 2022年2月4日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员