In recent years, Physics-informed neural networks (PINNs) have been widely used to solve partial differential equations alongside numerical methods because PINNs can be trained without observations and deal with continuous-time problems directly. In contrast, optimizing the parameters of such models is difficult, and individual training sessions must be performed to predict the evolutions of each different initial condition. To alleviate the first problem, observed data can be injected directly into the loss function part. To solve the second problem, a network architecture can be built as a framework to learn a finite difference method. In view of the two motivations, we propose Five-point stencil CNNs (FCNNs) containing a five-point stencil kernel and a trainable approximation function for reaction-diffusion type equations including the heat, Fisher's, Allen-Cahn, and other reaction-diffusion equations with trigonometric function terms. We show that FCNNs can learn finite difference schemes using few data and achieve the low relative errors of diverse reaction-diffusion evolutions with unseen initial conditions. Furthermore, we demonstrate that FCNNs can still be trained well even with using noisy data.
翻译:近年来,物理知情神经网络(PINNs)被广泛用于解决部分差异方程,并使用数字方法解决部分差异方程,因为PINNs可以在没有观测的情况下接受培训,直接处理连续时间问题。相比之下,优化这些模型的参数是困难的,必须进行个别培训以预测每个不同初始条件的演变情况。为了缓解第一个问题,观测到的数据可以直接注入损失函数部分。为了解决第二个问题,可以建立一个网络结构,作为学习有限差异方法的框架。鉴于这两种动机,我们提议五点特南西尔CNNs(FCNNs)包含一个五点超导内核内核和反应扩散型方程式的可训练近距离功能,包括热量、Fisherals、Allen-Cahn,以及带有三角函数术语的其他反振荡方程式。我们表明,FCNNs可以利用少量数据学习有限差异方案,并实现与隐形初始条件不同反应进化的低相对差。此外,我们证明FCNNs仍然能够用高压数据培训。