This work is motivated by learning the individualized minimal clinically important difference, a vital concept to assess clinical importance in various biomedical studies. We formulate the scientific question into a high-dimensional statistical problem where the parameter of interest lies in an individualized linear threshold. The goal is to develop a hypothesis testing procedure for the significance of a single element in this parameter as well as of a linear combination of this parameter. The difficulty dues to the high-dimensional nuisance in developing such a testing procedure, and also stems from the fact that this high-dimensional threshold model is nonregular and the limiting distribution of the corresponding estimator is nonstandard. To deal with these challenges, we construct a test statistic via a new bias-corrected smoothed decorrelated score approach, and establish its asymptotic distributions under both null and local alternative hypotheses. We propose a double-smoothing approach to select the optimal bandwidth in our test statistic and provide theoretical guarantees for the selected bandwidth. We conduct simulation studies to demonstrate how our proposed procedure can be applied in empirical studies. We apply the proposed method to a clinical trial where the scientific goal is to assess the clinical importance of a surgery procedure.
翻译:本工作的动机在于学习个性化的最小临床重要性差异,该概念对于评估各种生物医学研究中的临床重要性非常重要。我们将科学问题形式化为高维统计问题,其中感兴趣的参数位于个体化的线性阈值中。目标是开发假设检验程序,用于检验这个参数的单个元素以及这个参数的线性组合的显著性。高维干扰的存在增加了问题的难度,同时这个高维阈值模型是非规则的,其相应估计量的极限分布是非标准的。为了解决这些挑战,我们通过一种新的偏差校正平滑化装饰得分方法构造了一个检验统计量,并在空假设和局部替代假设下建立其渐近分布。我们提出了一个双平滑化方法来选择我们测试统计的最佳带宽,并为所选带宽提供理论保证。我们进行模拟研究,展示了我们提出的方法如何应用于实证研究。我们将所提出的方法应用于一项临床试验,目的是评估手术程序的临床重要性。