To facilitate widespread adoption of automated engineering design techniques, existing methods must become more efficient and generalizable. In the field of topology optimization, this requires the coupling of modern optimization methods with solvers capable of handling arbitrary problems. In this work, a topology optimization method for general multiphysics problems is presented. We leverage a convolutional neural parameterization of a level set for a description of the geometry and use this in an unfitted finite element method that is differentiable with respect to the level set everywhere in the domain. We construct the parameter to objective map in such a way that the gradient can be computed entirely by automatic differentiation at roughly the cost of an objective function evaluation. The method produces optimized topologies that are similar in performance yet exhibit greater regularity than baseline approaches on standard benchmarks whilst having the ability to solve a more general class of problems, e.g., interface-coupled multiphysics.


翻译:为了促进自动化工程设计技术的广泛采用,现有方法必须变得更加高效和通用。在拓扑优化领域,这需要将现代优化方法与能够处理任意问题的求解器相结合。本文介绍了一种适用于一般多物理问题的拓扑优化方法。我们利用水平集的卷积神经参数化来描述几何形状,并将其用于非配对有限元方法中,该方法在整个域内都可以与水平集微分。我们以这种方式构建参数到目标的映射,以便梯度可以通过自动微分在大约一个目标函数评估的代价下进行计算。该方法产生的优化拓扑在标准基准测试中与基准方法相似性能,同时比基准方法更具规则性,并具有解决更一般类别问题的能力,例如,接口耦合多物理问题。

0
下载
关闭预览

相关内容

干货书!基于单调算子的大规模凸优化,348页pdf
专知会员服务
48+阅读 · 2022年7月24日
【ICLR2022】通过传播网络编码学习通用的神经结构
专知会员服务
12+阅读 · 2022年2月13日
【Uber AI新论文】持续元学习,Learning to Continually Learn
专知会员服务
36+阅读 · 2020年2月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月12日
Arxiv
0+阅读 · 2023年5月11日
VIP会员
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员