We study recovery of amplitudes and nodes of a finite impulse train from noisy frequency samples. This problem is known as super-resolution under sparsity constraints and has numerous applications. An especially challenging scenario occurs when the separation between Dirac pulses is smaller than the Nyquist-Shannon-Rayleigh limit. Despite large volumes of research and well-established worst-case recovery bounds, there is currently no known computationally efficient method which achieves these bounds in practice. In this work we combine the well-known Prony's method for exponential fitting with a recently established decimation technique for analyzing the super-resolution problem in the above mentioned regime. We show that our approach attains optimal asymptotic stability in the presence of noise, and has lower computational complexity than the current state of the art methods.


翻译:我们研究从噪声频率样本中恢复有限脉冲列的幅度和节点的问题。这个问题被称为在稀疏约束条件下的超分辨率,具有众多应用。当Dirac脉冲之间的间隔小于Nyquist-Shannon-Rayleigh极限时,尤其具有挑战性的场景会出现。尽管已经有大量的研究和成熟的最坏情况恢复界限,但目前尚无已知的在实践中能够实现这些限制的计算有效方法。在本文中,我们将著名的Prony法用于指数拟合与最近建立的分析超分辨率问题的截频技术相结合。我们证明了在噪声存在的情况下,我们的方法达到了最优的渐近稳定性,并且具有比当前最高级的方法更低的计算复杂度。

0
下载
关闭预览

相关内容

干货书!基于单调算子的大规模凸优化,348页pdf
专知会员服务
48+阅读 · 2022年7月24日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
专知会员服务
50+阅读 · 2020年12月14日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】深度学习思维导图
机器学习研究会
15+阅读 · 2017年8月20日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月16日
Arxiv
0+阅读 · 2023年5月16日
Arxiv
0+阅读 · 2023年5月15日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】深度学习思维导图
机器学习研究会
15+阅读 · 2017年8月20日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员