Although Physics-Informed Neural Networks (PINNs) have been successfully applied in a wide variety of science and engineering fields, they can fail to accurately predict the underlying solution in slightly challenging convection-diffusion-reaction problems. In this paper, we investigate the reason of this failure from a domain distribution perspective, and identify that learning multi-scale fields simultaneously makes the network unable to advance its training and easily get stuck in poor local minima. We show that the widespread experience of sampling more collocation points in high-loss layer regions hardly help optimize and may even worsen the results. These findings motivate the development of a novel curriculum learning method that encourages neural networks to prioritize learning on easier non-layer regions while downplaying learning on harder layer regions. The proposed method helps PINNs automatically adjust the learning emphasis and thereby facilitate the optimization procedure. Numerical results on typical benchmark equations show that the proposed curriculum learning approach mitigates the failure modes of PINNs and can produce accurate results for very sharp boundary and interior layers. Our work reveals that for equations whose solutions have large scale differences, paying less attention to high-loss regions can be an effective strategy for learning them accurately.


翻译:尽管物理结构化神经网络(PINNs)在广泛的科学和工程领域中被成功应用,但在稍微具有挑战性的奇异扰动对流扩散反应问题中,它们可能无法准确预测潜在解。在本文中,我们从域分布的角度研究该失败的原因,并确定学习多尺度场同时使网络无法推进其训练并容易陷入较差的局部极小值。我们表明,采样更多高损耗层区域的经验很少有助于优化,甚至可能加剧结果。这些发现激发了一种新的课程学习方法的发展,该方法鼓励神经网络优先学习较容易的非层区域,同时降低对较困难的层区域的学习。所提出的方法帮助PINNs自动调整学习重点,从而促进了优化过程。典型基准方程的数值结果表明,所提出的课程学习方法缓解了PINNs的失败模式,并且可以产生对于非常尖锐的边界和内部层的准确结果。我们的工作揭示了,对于解具有大尺度差异的方程,降低对高损失区域的关注可能是一种准确学习的有效策略。

0
下载
关闭预览

相关内容

 DiffRec: 扩散推荐模型(SIGIR'23)
专知会员服务
48+阅读 · 2023年4月16日
【CMU博士论文】课程学习,Curriculum Learning,193页pdf
专知会员服务
52+阅读 · 2022年8月13日
首篇「课程学习(Curriculum Learning)」2021综述论文
专知会员服务
50+阅读 · 2021年1月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月15日
VIP会员
相关VIP内容
 DiffRec: 扩散推荐模型(SIGIR'23)
专知会员服务
48+阅读 · 2023年4月16日
【CMU博士论文】课程学习,Curriculum Learning,193页pdf
专知会员服务
52+阅读 · 2022年8月13日
首篇「课程学习(Curriculum Learning)」2021综述论文
专知会员服务
50+阅读 · 2021年1月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员