Incremental graph search algorithms such as D* Lite reuse previous, and perhaps partial, searches to expedite subsequent path planning tasks. In this article, we are interested in developing incremental graph search algorithms for path finding problems to simultaneously optimize multiple objectives such as travel risk, arrival time, etc. This is challenging because in a multi-objective setting, the number of "Pareto-optimal" solutions can grow exponentially with respect to the size of the graph. This article presents a new multi-objective incremental search algorithm called Multi-Objective Path-Based D* Lite (MOPBD*) which leverages a path-based expansion strategy to prune dominated solutions. Additionally, we introduce a sub-optimal variant of MOPBD* to improve search efficiency while approximating the Pareto-optimal front. We numerically evaluate the performance of MOPBD* and its variants in various maps with two and three objectives. Results show that our approach is more efficient than search from scratch, and runs up to an order of magnitude faster than the existing incremental method for multi-objective path planning.
翻译:递增图形搜索算法, 如 D* Lite 重新使用之前的, 或许是部分的, 以加快后续路径规划任务 。 在本条中, 我们有兴趣开发递增图形搜索算法, 以寻找同时优化旅行风险、 到达时间等多重目标的路径问题。 这一点具有挑战性, 因为在一个多目标环境中, “ 帕雷托- 最佳” 解决方案的数量可以随图形的大小而成倍增长。 文章展示了一个新的多目标递增搜索算法, 名为多目标路径路径路径路径的D* 利特( MOPBD* ), 它将基于路径的扩展战略用于普纳主宰的解决方案。 此外, 我们引入了 MOPBD * 的亚最佳变量, 来提高搜索效率, 同时与 Pareto- optimatal front 相近。 我们用数字评估了多个地图中的 MOPBD * 及其变量的绩效, 有两个和三个目标 。 结果表明, 我们的方法比从抓起搜索效率更高, 并运行到比多目标路径规划的现有递增方法更快到一个数量级 。