Feature quality has an impactful effect on recommendation performance. Thereby, feature selection is a critical process in developing deep learning-based recommender systems. Most existing deep recommender systems, however, focus on designing sophisticated neural networks, while neglecting the feature selection process. Typically, they just feed all possible features into their proposed deep architectures, or select important features manually by human experts. The former leads to non-trivial embedding parameters and extra inference time, while the latter requires plenty of expert knowledge and human labor effort. In this work, we propose an AutoML framework that can adaptively select the essential feature fields in an automatic manner. Specifically, we first design a differentiable controller network, which is capable of automatically adjusting the probability of selecting a particular feature field; then, only selected feature fields are utilized to retrain the deep recommendation model. Extensive experiments on three benchmark datasets demonstrate the effectiveness of our framework. We conduct further experiments to investigate its properties, including the transferability, key components, and parameter sensitivity.
翻译:特性选择是开发深层学习推荐人系统的关键过程。 然而,大多数现有的深层推荐人系统都侧重于设计先进的神经网络,而忽略了特征选择过程。 通常, 它们只是将所有可能的特征输入其提议的深层结构, 或由人类专家手工选择一些重要特征。 前者导致非三进化嵌入参数和额外推断时间, 而后者则需要大量的专业知识和人力劳动努力。 在这项工作中, 我们提议一个自动ML框架, 能够自动地适应地选择基本特征字段。 具体地说, 我们首先设计一个不同的控制人网络, 能够自动调整选择特定特征字段的概率; 然后, 仅使用选定的特征领域来重新配置深建议模型。 对三个基准数据集进行广泛的实验, 显示了我们框架的有效性。 我们进一步进行实验, 以调查其特性, 包括可转移性、 关键组成部分 和参数敏感性 。