Approximately 50% of development resources are devoted to UI development tasks [9]. Occupying a large proportion of development resources, developing icons can be a time-consuming task, because developers need to consider not only effective implementation methods but also easy-to-understand descriptions. In this paper, we present Auto-Icon+, an approach for automatically generating readable and efficient code for icons from design artifacts. According to our interviews to understand the gap between designers (icons are assembled from multiple components) and developers (icons as single images), we apply a heuristic clustering algorithm to compose the components into an icon image. We then propose an approach based on a deep learning model and computer vision methods to convert the composed icon image to fonts with descriptive labels, thereby reducing the laborious manual effort for developers and facilitating UI development. We quantitatively evaluate the quality of our method in the real world UI development environment and demonstrate that our method offers developers accurate, efficient, readable, and usable code for icon designs, in terms of saving 65.2% implementing time.
翻译:大约50%的开发资源用于联合参与开发任务 [9] 。 占用大量开发资源,开发图标可能是一项耗时的工作,因为开发者不仅需要考虑有效的实施方法,而且需要容易理解的描述。 在本文中,我们介绍了自动-ICon+,这是自动生成设计文物图标可读和有效的代码的一种方法。根据为了解设计者(从多个组件中集合的icon)和开发者(作为单一图像)之间差距而进行的访谈,我们运用了超常的组合算法将组件组成成一个图标图像。然后,我们提出了一个基于深层学习模型和计算机视觉方法的方法,将组成图标图像转换成带有描述标签的字体,从而减少开发者辛苦的手工努力,并促进联合开发。我们从数量上评估了我们的方法在真实的世界联合开发环境中的质量,并表明我们的方法为图标设计提供准确、高效、可读和使用代码,以节省65.2%的执行时间。