Recent work has used deep learning to derive symmetry transformations, which preserve conserved quantities, and to obtain the corresponding algebras of generators. In this letter, we extend this technique to derive sparse representations of arbitrary Lie algebras. We show that our method reproduces the canonical (sparse) representations of the generators of the Lorentz group, as well as the $U(n)$ and $SU(n)$ families of Lie groups. This approach is completely general and can be used to find the infinitesimal generators for any Lie group.
翻译:最近的工作利用深层的学习来得出对称变换,从而保留了保留的数量,并获得了相应的发电机代数。在本信中,我们扩展了这一技术,以获得任意的Lie代数的稀少表现。我们表明,我们的方法复制了Lorentz组发电机以及Lilentz组发电机家属的卡通(粗)表示以及美元(n)美元和美元(n)美元。这种方法是完全通用的,可以用来为任何Lie组寻找无限的发电机。