This study presents a systematic machine learning approach for creating efficient hybrid models and discovering sorption uptake models in non-linear advection-diffusion-sorption systems. It demonstrates an effective method to train these complex systems using gradient based optimizers, adjoint sensitivity analysis, and JIT-compiled vector Jacobian products, combined with spatial discretization and adaptive integrators. Sparse and symbolic regression were employed to identify missing functions in the artificial neural network. The robustness of the proposed method was tested on an in-silico data set of noisy breakthrough curve observations of fixed-bed adsorption, resulting in a well-fitted hybrid model. The study successfully reconstructed sorption uptake kinetics using sparse and symbolic regression, and accurately predicted breakthrough curves using identified polynomials, highlighting the potential of the proposed framework for discovering sorption kinetic law structures.
翻译:本研究提出了一种系统的机器学习方法,用于创建高效的混合模型并发现非线性对流-扩散-吸附系统中的吸附吸收模型。它演示了使用梯度优化器、伴随灵敏度分析和JIT-编译的向量雅各比乘积,结合空间离散化和自适应积分器来训练这些复杂系统的有效方法。采用稀疏和符号回归来识别人工神经网络中的缺失函数。该研究在一个模拟的含噪声床固定吸附的突破曲线观测数据集上测试了所提出方法的鲁棒性。结果得到了拟合良好的混合模型。该研究成功地重建了吸附吸收动力学,采用所识别的多项式精确地预测了突破曲线,突显了所提出框架发现吸附动力学规律结构的潜力。