In this paper, we introduce equivalence testing procedures for standardized effect sizes in a linear regression. We show how to define valid hypotheses and calculate p-values for these tests. Such tests are necessary to confirm the lack of a meaningful association between an outcome and predictors. A simulation study is conducted to examine type I error rates and statistical power. We also compare using equivalence testing as part of a frequentist testing scheme with an alternative Bayesian testing approach. The results indicate that the proposed equivalence test is a potentially useful tool for "testing the null."
翻译:在本文中,我们引入了在线性回归中标准化效果大小的等同测试程序。 我们展示了如何定义有效假设和计算这些试验的p值。 此类测试对于确认结果和预测器之间缺乏有意义的联系是必要的。 进行了模拟研究,以检查第一类误差率和统计力。 我们还将使用等同测试作为常客测试计划的一部分与一种替代贝叶斯测试方法进行比较。 结果表明,提议的等同测试是“ 测试无效” 的一种潜在有用工具。