In this paper, we introduce equivalence testing procedures for standardized effect sizes in a linear regression. We show how to define valid hypotheses and calculate p-values for these tests. Such tests are necessary to confirm the lack of a meaningful association between an outcome and predictors. A simulation study is conducted to examine type I error rates and statistical power. We also compare using equivalence testing as part of a frequentist testing scheme with an alternative Bayesian testing approach. The results indicate that the proposed equivalence test is a potentially useful tool for "testing the null."


翻译:在本文中,我们引入了在线性回归中标准化效果大小的等同测试程序。 我们展示了如何定义有效假设和计算这些试验的p值。 此类测试对于确认结果和预测器之间缺乏有意义的联系是必要的。 进行了模拟研究,以检查第一类误差率和统计力。 我们还将使用等同测试作为常客测试计划的一部分与一种替代贝叶斯测试方法进行比较。 结果表明,提议的等同测试是“ 测试无效” 的一种潜在有用工具。

0
下载
关闭预览

相关内容

线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。其表达形式为y = w'x+e,e为误差服从均值为0的正态分布。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【经典书】线性代数,Linear Algebra,525页pdf
专知会员服务
77+阅读 · 2021年1月29日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
已删除
将门创投
3+阅读 · 2018年3月13日
Simple Recurrent Unit For Sentence Classification
哈工大SCIR
6+阅读 · 2017年11月29日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年11月9日
Arxiv
0+阅读 · 2021年11月7日
Arxiv
0+阅读 · 2021年11月5日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
【经典书】线性代数,Linear Algebra,525页pdf
专知会员服务
77+阅读 · 2021年1月29日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
已删除
将门创投
3+阅读 · 2018年3月13日
Simple Recurrent Unit For Sentence Classification
哈工大SCIR
6+阅读 · 2017年11月29日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员