There is a well-known equivalence between avoiding accuracy dominance and having probabilistically coherent credences (see, e.g., de Finetti 1974, Joyce 2009, Predd et al. 2009, Schervish et al. 2009, Pettigrew 2016). However, this equivalence has been established only when the set of propositions on which credence functions are defined is finite. In this paper, we establish connections between accuracy dominance and coherence when credence functions are defined on an infinite set of propositions. In particular, we establish the necessary results to extend the classic accuracy argument for probabilism originally due to Joyce (1998) to certain classes of infinite sets of propositions including countably infinite partitions.
翻译:众所周知,避免准确性主导地位与概率一致的可信地位是等同的(例如,见de Finetti 1974年、Joyce 2009年、Predd等人 2009年、Schervish 等人 2009年、Pettigrew 2016年),然而,只有当确定可靠功能的一套主张是有限的时才确立这种等同地位。在本文中,当根据一套无限的主张界定可信功能时,我们在准确性主导地位和一致性之间建立了联系。特别是,我们确立了必要的结果,将最初由Joyce (1998年)引起的典型的概率精确性论点扩大到某些种类的无限主张,包括可量化的无限分割。