Estimating the structures at high or low quantiles has become an important subject and attracted increasing attention across numerous fields. However, due to data sparsity at tails, it usually is a challenging task to obtain reliable estimation, especially for high-dimensional data. This paper suggests a flexible parametric structure to tails, and this enables us to conduct the estimation at quantile levels with rich observations and then to extrapolate the fitted structures to far tails. The proposed model depends on some quantile indices and hence is called the quantile index regression. Moreover, the composite quantile regression method is employed to obtain non-crossing quantile estimators, and this paper further establishes their theoretical properties, including asymptotic normality for the case with low-dimensional covariates and non-asymptotic error bounds for that with high-dimensional covariates. Simulation studies and an empirical example are presented to illustrate the usefulness of the new model.


翻译:估计高孔径或低孔径结构已成为一个重要主题,在多个领域引起越来越多的注意。然而,由于尾部的数据宽度,获取可靠的估计,特别是高维数据,通常是一项艰巨的任务。本文建议对尾部采用灵活的参数结构,从而使我们能够用丰富的观测结果对孔径层进行估计,然后将适合的结构外推至远尾部。拟议的模型取决于某些量化指数,因此称为量化指数回归。此外,复合定量回归法用于获取非交叉定量估测器,本文进一步确立了它们的理论特性,包括低度共变异和非随机误差情况下的理论常态性,并用高度共变异度进行模拟研究和实验范例,以说明新模型的实用性。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
逻辑回归(Logistic Regression) 模型简介
全球人工智能
5+阅读 · 2017年11月1日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
0+阅读 · 2022年1月9日
Arxiv
0+阅读 · 2022年1月9日
Arxiv
0+阅读 · 2022年1月8日
Arxiv
0+阅读 · 2022年1月6日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
逻辑回归(Logistic Regression) 模型简介
全球人工智能
5+阅读 · 2017年11月1日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
相关论文
Top
微信扫码咨询专知VIP会员