In this study, we propose a function-on-function linear quantile regression model that allows for more than one functional predictor to establish a more flexible and robust approach. The proposed model is first transformed into a finite-dimensional space via the functional principal component analysis paradigm in the estimation phase. It is then approximated using the estimated functional principal component functions, and the estimated parameter of the quantile regression model is constructed based on the principal component scores. In addition, we propose a Bayesian information criterion to determine the optimum number of truncation constants used in the functional principal component decomposition. Moreover, a stepwise forward procedure and the Bayesian information criterion are used to determine the significant predictors for including in the model. We employ a nonparametric bootstrap procedure to construct prediction intervals for the response functions. The finite sample performance of the proposed method is evaluated via several Monte Carlo experiments and an empirical data example, and the results produced by the proposed method are compared with the ones from existing models.
翻译:在本研究中,我们提出了一个功能对功能的线性微积分回归模型,允许不止一个功能预测器建立一个更灵活和稳健的方法。拟议的模型首先通过估算阶段的功能主元组成部分分析模式转变为一个有限空间,然后使用估计的功能主元组成部分功能进行估计,根据主要组成部分的分数构建了四分回归模型的估计参数。此外,我们还提出了一个贝叶斯信息标准,以确定功能主元组成部分分解中使用的脱解常数的最佳数目。此外,还采用了一个向前推进程序和巴耶斯信息标准来确定列入模型的重要预测器。我们采用了一种非对称靴式程序,以构建响应功能的预测间隔。通过几个蒙特卡洛实验和一个经验数据实例对拟议方法的有限样本性表现进行了评估,并将拟议方法得出的结果与现有模型的结果进行比较。