We provide (high probability) bounds on the condition number of random feature matrices. In particular, we show that if the complexity ratio $\frac{N}{m}$ where $N$ is the number of neurons and $m$ is the number of data samples scales like $\log^{-1}(N)$ or $\log(m)$, then the random feature matrix is well-conditioned. This result holds without the need of regularization and relies on establishing various concentration bounds between dependent components of the random feature matrix. Additionally, we derive bounds on the restricted isometry constant of the random feature matrix. We prove that the risk associated with regression problems using a random feature matrix exhibits the double descent phenomenon and that this is an effect of the double descent behavior of the condition number. The risk bounds include the underparameterized setting using the least squares problem and the overparameterized setting where using either the minimum norm interpolation problem or a sparse regression problem. For the least squares or sparse regression cases, we show that the risk decreases as $m$ and $N$ increase, even in the presence of bounded or random noise. The risk bound matches the optimal scaling in the literature and the constants in our results are explicit and independent of the dimension of the data.


翻译:我们提供了随机特性矩阵条件数的(高概率)界限。 特别是, 我们显示, 如果复杂比率 $\ frac{ n ⁇ m} $, 美元为神经元数, 美元为美元, 美元为美元, 美元为美元, 美元为美元, 美元为美元, 那么数据样本量( 如 $\log}-1}( N) 美元 或 美元 美元 美元 ), 那么随机特性矩阵条件( 美元 ), 则随机特性矩阵条件数( 美元 ) 提供了( 高概率 ) 。 因此, 随机特性矩阵条件( 美元 ) 提供了( 高概率 ) 。 这个结果不需要规范, 并依赖于随机特性矩阵各依附组成部分之间设定不同的浓度界限。 此外, 我们从随机特性矩阵限制的异差常数常数 中获取的回归常数 。 我们证明, 与回归问题有关的风险以美元和 美元 美元 美元 美元 。 我们证明 与回归问题有关的风险会降低 。

0
下载
关闭预览

相关内容

学习方法的泛化能力(Generalization Error)是由该方法学习到的模型对未知数据的预测能力,是学习方法本质上重要的性质。现实中采用最多的办法是通过测试泛化误差来评价学习方法的泛化能力。泛化误差界刻画了学习算法的经验风险与期望风险之间偏差和收敛速度。一个机器学习的泛化误差(Generalization Error),是一个描述学生机器在从样品数据中学习之后,离教师机器之间的差距的函数。
专知会员服务
50+阅读 · 2020年12月14日
经济学中的数据科学,Data Science in Economics,附22页pdf
专知会员服务
35+阅读 · 2020年4月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
已删除
将门创投
7+阅读 · 2018年8月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2022年1月9日
Arxiv
0+阅读 · 2022年1月7日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
已删除
将门创投
7+阅读 · 2018年8月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员