The availability of Martian atmospheric data provided by several Martian missions broadened the opportunity to investigate and study the conditions of the Martian ionosphere. As such, ionospheric models play a crucial part in improving our understanding of ionospheric behavior in response to different spatial, temporal, and space weather conditions. This work represents an initial attempt to construct an electron density prediction model of the Martian ionosphere using machine learning. The model targets the ionosphere at solar zenith ranging from 70 to 90 degrees, and as such only utilizes observations from the Mars Global Surveyor mission. The performance of different machine learning methods was compared in terms of root mean square error, coefficient of determination, and mean absolute error. The bagged regression trees method performed best out of all the evaluated methods. Furthermore, the optimized bagged regression trees model outperformed other Martian ionosphere models from the literature (MIRI and NeMars) in finding the peak electron density value, and the peak density height in terms of root-mean-square error and mean absolute error.
翻译:由若干火星飞行任务提供的火星大气数据扩大了对火星电离层条件进行调查和研究的机会,因此,电离层模型在根据不同的空间、时间和空间天气条件改进我们对电离层行为的了解方面发挥着关键的作用。这项工作是初步尝试利用机器学习来建立火星电离层电子密度预测模型。模型的目标是太阳天顶的电离层70至90度,因此只能利用火星全球勘测器飞行任务的观测结果。不同机器学习方法的性能在根平方差、确定系数和绝对值差方面进行了比较。包状回归树方法在所有评估方法中表现得最优。此外,优化的包状回归树模型比文献中的其他火星电离层模型(MIRI和Nemars)外,在发现峰值电子密度值时,以及根平方误和平均误差时的峰密度高度。