Several Artificial Intelligence based heuristic and metaheuristic algorithms have been developed so far. These algorithms have shown their superiority towards solving complex problems from different domains. However, it is necessary to critically validate these algorithms for solving real-world constrained optimization problems. The search behavior in those problems is different as it involves large number of linear, nonlinear and non-convex type equality and inequality constraints. In this work a 57 real-world constrained optimization problems test suite is solved using two constrained metaheuristic algorithms originated from a socio-based Cohort Intelligence (CI) algorithm. The first CI-based algorithm incorporates a self-adaptive penalty function approach i.e., CI-SAPF. The second algorithm combines CI-SAPF with the intrinsic properties of the physics-based Colliding Bodies Optimization (CBO) referred to CI-SAPF-CBO. The results obtained from CI-SAPF and CI-SAPF-CBO are compared with other constrained optimization algorithms. The superiority of the proposed algorithms is discussed in details followed by future directions to evolve the constrained handling techniques.


翻译:到目前为止,已经开发出若干基于人工智能的超光速和超光速算法。这些算法显示它们优于解决不同领域的复杂问题。然而,有必要严格验证这些算法,以解决现实世界限制的优化问题。这些问题的搜索行为不同,因为它涉及大量线性、非线性和非线性类型的平等和不平等制约。在这项工作中,57个现实世界受限制的优化问题测试套件通过两种来自基于社会的Cohort Intreal(CI)算法的受限的计量经济学算法来解决。第一个基于CI的算法包含了一种自我适应的惩罚功能方法,即CI-SAPF。第二个算法将CI-SAPF与C-SAPF-CBO(CBO)提到的基于物理的相互协作机构Oppim化(CBO)的内在特性结合起来。从CI-SAPF和CI-SAPF-CBO获得的结果与其他受限制的优化算法进行了比较。拟议的算法的优越性在细节中讨论,然后将未来方向发展受限制的处理技术。

0
下载
关闭预览

相关内容

Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
119+阅读 · 2022年4月21日
【2022新书】强化学习工业应用,408页pdf
专知会员服务
228+阅读 · 2022年2月3日
专知会员服务
31+阅读 · 2021年6月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关VIP内容
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
119+阅读 · 2022年4月21日
【2022新书】强化学习工业应用,408页pdf
专知会员服务
228+阅读 · 2022年2月3日
专知会员服务
31+阅读 · 2021年6月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员