We investigate the frequentist properties of the variational sparse Gaussian Process regression model. In the theoretical analysis we focus on the variational approach with spectral features as inducing variables. We derive guarantees and limitations for the frequentist coverage of the resulting variational credible sets. We also derive sufficient and necessary lower bounds for the number of inducing variables required to achieve minimax posterior contraction rates. The implications of these results are demonstrated for different choices of priors. In a numerical analysis we consider a wider range of inducing variable methods and observe similar phenomena beyond the scope of our theoretical findings.
翻译:我们调查了变质稀疏高斯进程回归模型的常客特性。在理论分析中,我们侧重于带光谱特征作为诱导变量的变异方法。我们为由此产生的变异可靠数据集的常客覆盖度提供了保障和限制。我们还为达到微缩后级收缩率所需的诱因变量的数量提供了足够和必要的下限。这些结果的影响表现为对前科的不同选择。在数字分析中,我们考虑了更广泛的诱导变异方法,并观察了超出我们理论结论范围的类似现象。