The theory of learning in games has so far focused mainly on games with simultaneous moves. Recently, researchers in machine learning have started investigating learning dynamics in games involving hierarchical decision-making. We consider an $N$-player hierarchical game in which the $i$th player's objective comprises of an expectation-valued term, parametrized by rival decisions, and a hierarchical term. Such a framework allows for capturing a broad range of stochastic hierarchical optimization problems, Stackelberg equilibrium problems, and leader-follower games. We develop an iteratively regularized and smoothed variance-reduced modified extragradient framework for learning hierarchical equilibria in a stochastic setting. We equip our analysis with rate statements, complexity guarantees, and almost-sure convergence claims. We then extend these statements to settings where the lower-level problem is solved inexactly and provide the corresponding rate and complexity statements.
翻译:游戏中的学习理论到目前为止主要集中于同时运动的游戏。 最近, 机器学习的研究人员已开始调查涉及等级决策的游戏中的学习动态。 我们考虑的是美元玩家的等级游戏,其中美元玩家的目标包括一个预期价值的术语,由对立的决定和等级术语加以平衡。 这样一个框架可以捕捉一系列广泛的杂乱的等级优化问题、 Stakkelberg 平衡问题和领导人追随者游戏。 我们开发了一个迭代的、常规化的和平稳的、经过调整的变相调整的异常调整框架, 用于在随机环境中学习等级平衡。 我们用利率说明、 复杂性保证和几乎肯定的趋同主张来进行我们的分析。 然后,我们将这些声明扩大到较低层次的问题得到精确解决的环境, 并提供相应的率和复杂性说明。