Computed tomography is widely used as an imaging tool to visualize three-dimensional structures with expressive bone-soft tissue contrast. However, CT resolution and radiation dose are tightly entangled, highlighting the importance of low-dose CT combined with sophisticated denoising algorithms. Most data-driven denoising techniques are based on deep neural networks and, therefore, contain hundreds of thousands of trainable parameters, making them incomprehensible and prone to prediction failures. Developing understandable and robust denoising algorithms achieving state-of-the-art performance helps to minimize radiation dose while maintaining data integrity. This work presents an open-source CT denoising framework based on the idea of bilateral filtering. We propose a bilateral filter that can be incorporated into a deep learning pipeline and optimized in a purely data-driven way by calculating the gradient flow toward its hyperparameters and its input. Denoising in pure image-to-image pipelines and across different domains such as raw detector data and reconstructed volume, using a differentiable backprojection layer, is demonstrated. Although only using three spatial parameters and one range parameter per filter layer, the proposed denoising pipelines can compete with deep state-of-the-art denoising architectures with several hundred thousand parameters. Competitive denoising performance is achieved on x-ray microscope bone data (0.7053 and 33.10) and the 2016 Low Dose CT Grand Challenge dataset (0.9674 and 43.07) in terms of SSIM and PSNR. Due to the extremely low number of trainable parameters with well-defined effect, prediction reliance and data integrity is guaranteed at any time in the proposed pipelines, in contrast to most other deep learning-based denoising architectures.
翻译:测量成像法被广泛用作一个成像工具,以直观的骨软组织对比度来视觉三维结构。然而,CT分辨率和辐射剂量被紧紧缠在一起,凸显低剂量CT与精密的分解算法相结合的重要性。大多数数据驱动的分解技术都以深神经网络为基础,因此包含数十万个可训练参数,使得它们无法理解,容易预测失败。开发可理解和稳健的分解算法,达到最新水平的参数有助于在保持数据完整性的同时尽量减少辐射剂量。这项工作提供了一个基于双边过滤理念的开放源的CT分解框架。我们提议了一个双边过滤器,可以通过计算向超参数和输入的梯度流来将低剂量CT纳入一个深层次的学习管道中,通过计算梯度流向超参数和输入的输入来优化数据。在纯图像到图像映射管的管道中以及不同领域,例如原始探测器的数据和可重新校正的S-70级反射程数据层中,只能使用三个空间参数和最远范围的直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直流的根框径直径直径直径直径直的根框框框框框框框框框框框框框框框框框框架框架框架框架框架框架框架框架框架框架。我们,在深度分数中,在深度分解数据,在深度分解了。在深度分解了。