Physics-informed neural networks (PINNs) have been proposed to learn the solution of partial differential equations (PDE). In PINNs, the residual form of the PDE of interest and its boundary conditions are lumped into a composite objective function as soft penalties. Here, we show that this specific way of formulating the objective function is the source of severe limitations in the PINN approach when applied to different kinds of PDEs. To address these limitations, we propose a versatile framework based on a constrained optimization problem formulation, where we use the augmented Lagrangian method (ALM) to constrain the solution of a PDE with its boundary conditions and any high-fidelity data that may be available. Our approach is adept at forward and inverse problems with multi-fidelity data fusion. We demonstrate the efficacy and versatility of our physics- and equality-constrained deep-learning framework by applying it to several forward and inverse problems involving multi-dimensional PDEs. Our framework achieves orders of magnitude improvements in accuracy levels in comparison with state-of-the-art physics-informed neural networks.
翻译:为了了解部分差异方程式(PDE)的解决方案,建议采用物理知情神经网络(PINNs)来学习部分差异方程式(PDE)的解决方案。在PINNs中,利益方程式的剩余形式及其边界条件被作为软性惩罚,合并成一个综合目标功能。我们在这里表明,这种制定目标功能的具体方式是PINN方法在应用到不同类型的PDEs时受到严重限制的根源。为了解决这些局限性,我们提出了一个基于限制优化问题的多功能框架,即我们使用拉格朗加法(ALM)来限制PDE的解决方案及其边界条件和可能存在的任何高忠诚度数据。我们的方法适应于多忠诚数据融合的前方和反面问题。我们展示了我们受物理和平等制约的深层学习框架的功效和多面PDEs应用于多个前方和反面问题。我们的框架在精确度方面实现了与状态物理学知情内线网络相比的顺序。