Functional data such as curves and surfaces have become more and more common with modern technological advancements. The use of functional predictors remains challenging due to its inherent infinite-dimensionality. The common practice is to project functional data into a finite dimensional space. The popular partial least square (PLS) method has been well studied for the functional linear model [1]. As an alternative, quantile regression provides a robust and more comprehensive picture of the conditional distribution of a response when it is non-normal, heavy-tailed, or contaminated by outliers. While partial quantile regression (PQR) was proposed in [2], no theoretical guarantees were provided due to the iterative nature of the algorithm and the non-smoothness of quantile loss function. To address these issues, we propose an alternative PQR (APQR) formulation with guaranteed convergence. This novel formulation motivates new theories and allows us to establish asymptotic properties. Numerical studies on a benchmark dataset show the superiority of our new approach. We also apply our novel method to a functional magnetic resonance imaging (fMRI) data to predict attention deficit hyperactivity disorder (ADHD) and a diffusion tensor imaging (DTI) dataset to predict Alzheimer's disease (AD).


翻译:功能性数据,如曲线和表面,随着现代技术进步而越来越常见。功能性数据,如曲线和表面,随着现代技术进步,功能性数据等功能数据越来越常见。功能性预测器的使用因其内在的无限维度而仍然具有挑战性。通常的做法是将功能性数据投射到一个有限的维度空间中。常见的做法是将功能性数据投射到一个有限的维度空间中。对功能性线性模型[1]进行了十分广泛的局部部分方(PLS)方法已经进行了深入的研究。作为一种替代方法,四元回归为非正常、重尾量或受外部线污染时反应的有条件分布提供了更加稳健和更加全面的图片。虽然在[2]中提出了部分微量回归(PQR)的建议,但是由于算法的迭代性质和孔性损失功能的非光度功能,没有提供理论保证。为了解决这些问题,我们提出了一种有保证趋同性的PQR(APQR)替代配方。作为一种新理论,并使我们能够建立无药性特性的特性。基准性数据集的数值研究显示了我们的新办法的优越性。我们还将我们的新方法应用于功能性磁共振动性磁共振成成成成像(fDRI)数据,以预测超动性磁性地震成(ADDDDDDDRISDRismad) 和ADRismaismaismamlismad) 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月20日
Core-Elements for Classical Linear Regression
Arxiv
0+阅读 · 2023年3月17日
Arxiv
0+阅读 · 2023年3月16日
Arxiv
0+阅读 · 2023年3月16日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员