We introduce algebraic machine reasoning, a new reasoning framework that is well-suited for abstract reasoning. Effectively, algebraic machine reasoning reduces the difficult process of novel problem-solving to routine algebraic computation. The fundamental algebraic objects of interest are the ideals of some suitably initialized polynomial ring. We shall explain how solving Raven's Progressive Matrices (RPMs) can be realized as computational problems in algebra, which combine various well-known algebraic subroutines that include: Computing the Gr\"obner basis of an ideal, checking for ideal containment, etc. Crucially, the additional algebraic structure satisfied by ideals allows for more operations on ideals beyond set-theoretic operations. Our algebraic machine reasoning framework is not only able to select the correct answer from a given answer set, but also able to generate the correct answer with only the question matrix given. Experiments on the I-RAVEN dataset yield an overall $93.2\%$ accuracy, which significantly outperforms the current state-of-the-art accuracy of $77.0\%$ and exceeds human performance at $84.4\%$ accuracy.


翻译:我们引入了代数机器推理,一种新的适用于抽象推理的推理框架。实际上,代数机器推理将新颖问题解决的困难过程归约为例行的代数计算。感兴趣的基本代数对象是某些适当初始化的多项式环的理想。我们将解释如何将Raven's Progressive Matrices(RPMs)求解为代数计算问题,这些问题结合了各种众所周知的代数子程序,其中包括:计算理想的Gröbner基础,检查理想包含关系等。至关重要的是,理想满足的附加代数结构允许在集合论操作之外对理想执行更多操作。我们的代数机器推理框架不仅能够从给定的答案集中选择正确的答案,还能够仅使用给定的问题矩阵生成正确的答案。对I-RAVEN数据集的实验产生了整体93.2%的准确率,这显著优于当前的最先进准确度77.0%,并超过人类的84.4%准确度。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【斯坦福CS520】向量空间中嵌入的知识图谱推理,48页ppt
专知会员服务
101+阅读 · 2020年6月11日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
29+阅读 · 2019年10月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月10日
Arxiv
0+阅读 · 2023年5月10日
Arxiv
26+阅读 · 2018年9月21日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【斯坦福CS520】向量空间中嵌入的知识图谱推理,48页ppt
专知会员服务
101+阅读 · 2020年6月11日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
29+阅读 · 2019年10月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员