This paper presents a new method for combining (or aggregating or ensembling) multivariate probabilistic forecasts, taking into account dependencies between quantiles and covariates through a smoothing procedure that allows for online learning. Two smoothing methods are discussed: dimensionality reduction using Basis matrices and penalized smoothing. The new online learning algorithm generalizes the standard CRPS learning framework into multivariate dimensions. It is based on Bernstein Online Aggregation (BOA) and yields optimal asymptotic learning properties. We provide an in-depth discussion on possible extensions of the algorithm and several nested cases related to the existing literature on online forecast combination. The methodology is applied to forecasting day-ahead electricity prices, which are 24-dimensional distributional forecasts. The proposed method yields significant improvements over uniform combination in terms of continuous ranked probability score (CRPS). We discuss the temporal evolution of the weights and hyperparameters and present the results of reduced versions of the preferred model. A fast C++ implementation of all discussed methods is provided in the R-Package profoc.
翻译:本文提出了一种新的方法,用于结合(或集成或组合)多元概率预测,通过允许在线学习来考虑量化和协变量之间的依赖关系。讨论了两种平滑方法:使用基矩阵的降维和惩罚平滑。新的在线学习算法将标准CRPS学习框架推广到多元维度。它基于Bernstein Online Aggregation (BOA),并具有最佳的渐近学习性质。我们对算法的可能扩展和与在线预测组合现有文献相关的几个嵌套案例进行了深入讨论。该方法应用于预测日前电力价格,这是24维分布预测。与 uniform combination 相比,所提出的方法在连续排名概率得分 (CRPS)方面显著改善。我们讨论了权重和超参数的时间演变,并提供了首选模型的简化版本结果。所有讨论的方法都在R-Package profoc中提供了快速的C++实现。