We propose in this article to build up a collaboration between a deep neural network and a human in the loop to swiftly obtain accurate segmentation maps of remote sensing images. In a nutshell, the agent iteratively interacts with the network to correct its initially flawed predictions. Concretely, these interactions are annotations representing the semantic labels. Our methodological contribution is twofold. First, we propose two interactive learning schemes to integrate user inputs into deep neural networks. The first one concatenates the annotations with the other network's inputs. The second one uses the annotations as a sparse ground-truth to retrain the network. Second, we propose an active learning strategy to guide the user towards the most relevant areas to annotate. To this purpose, we compare different state-of-the-art acquisition functions to evaluate the neural network uncertainty such as ConfidNet, entropy or ODIN. Through experiments on three remote sensing datasets, we show the effectiveness of the proposed methods. Notably, we show that active learning based on uncertainty estimation enables to quickly lead the user towards mistakes and that it is thus relevant to guide the user interventions.
翻译:我们在本篇文章中提议在深神经网络和人环绕中建立协作关系,以便迅速获得遥感图像的准确分解图。 简而言之, 代理人与网络互动, 以纠正最初有缺陷的预测。 具体地说, 这些互动是代表语义标签的说明。 我们的方法贡献是双重的。 首先, 我们提出两个互动学习计划, 将用户输入到深神经网络中。 第一个方案将说明与其他网络的投入混为一体。 第二个方案利用说明作为稀疏的地面真相来重新控制网络。 第二, 我们提出一个积极的学习战略, 引导用户进入最相关的领域。 为此, 我们比较了不同的先进获取功能, 来评估神经网络不确定性, 如 ConpidNet、 entropy 或 ODIN。 通过对三个遥感数据集的实验, 我们展示了拟议方法的有效性。 值得注意的是, 我们显示基于不确定性的动态学习能够快速引导用户走向错误, 因此它与指导用户的干预有关。