In this paper, we propose a novel mutual consistency network (MC-Net+) to effectively exploit the unlabeled data for semi-supervised medical image segmentation. The MC-Net+ model is motivated by the observation that deep models trained with limited annotations are prone to output highly uncertain and easily mis-classified predictions in ambiguous regions (e.g., adhesive edges or thin branches) for medical image segmentation. Leveraging these region-level challenging samples can make the semi-supervised segmentation model training more effective. Therefore, our proposed MC-Net+ model consists of two new designs. First, the model contains one shared encoder and multiple slightly different decoders (i.e., using different up-sampling strategies). The statistical discrepancy of multiple decoders' outputs is computed to denote the model's uncertainty, which indicates the unlabeled hard regions. Second, we apply a novel mutual consistency constraint between one decoder's probability output and other decoders' soft pseudo labels. In this way, we minimize the discrepancy of multiple outputs (i.e., the model uncertainty) during training and force the model to generate invariant results in such challenging regions, aiming at capturing more useful features. We compared the segmentation results of our MC-Net+ with five state-of-the-art semi-supervised approaches on three public medical datasets. Extension experiments with two common semi-supervised settings demonstrate the superior performance of our model over other existing methods, which sets a new state of the art for semi-supervised medical image segmentation.
翻译:在本文中,我们提出一个新的相互一致性网络(MC-Net+ ), 以有效地利用未贴标签的数据进行半监督的医疗图像分割。 MC- Net+ 模型的动机是观察到经过有限注释训练的深模型容易在模糊区域(如粘合边缘或薄枝)为医学图像分割而产出高度不确定和容易错误分类的预测。 利用这些区域级具有挑战性的样本可以使半监督的分解模型培训更加有效。 因此, 我们提议的MC- Net+ 模型由两种新设计组成。 首先, 模型包含一个共享的半监督的网络编码器和多个略有不同的解码器( 即使用不同的上层抽样战略 ) 。 多解码器输出的统计差异可以表示模型的不确定性, 这表明未贴标签的硬区域。 其次, 我们对这些具有挑战性的解码模型的概率输出和其他半透明化的虚拟标签进行新的相互制约。 这样, 我们尽可能缩小了多种产出的差异( i. i. roverial- develil- laveal) 的多重输出( ) 与我们共同的医学和两个模型的高级数据结构在五级的模型的模型中 对比结果中, 的模型的模型的对比, 的模型的模型的模型的模型的模型的模型的特性特性特性特性特性和结果的对比, 的对比, 和结构的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的特性的特性的特性的特性的特性的特性的特性的特性的特性的特性的特性的特性的比。