Robot developers develop various types of robots for satisfying users' various demands. Users' demands are related to their backgrounds and robots suitable for users may vary. If a certain developer would offer a robot that is different from the usual to a user, the robot-specific software has to be changed. On the other hand, robot-software developers would like to reuse their developed software as much as possible to reduce their efforts. We propose the system design considering hardware-level reusability. For this purpose, we begin with the learning-from-observation framework. This framework represents a target task in robot-agnostic representation, and thus the represented task description can be shared with various robots. When executing the task, it is necessary to convert the robot-agnostic description into commands of a target robot. To increase the reusability, first, we implement the skill library, robot motion primitives, only considering a robot hand and we regarded that a robot was just a carrier to move the hand on the target trajectory. The skill library is reusable if we would like to the same robot hand. Second, we employ the generic IK solver to quickly swap a robot. We verify the hardware-level reusability by applying two task descriptions to two different robots, Nextage and Fetch.
翻译:机器人开发者开发各种类型的机器人以满足用户的各种需求。 用户的需求与他们的背景有关, 适合用户的机器人可能不同。 如果某个开发者会提供与用户不同、 与用户不同、 机器人专用软件必须改变。 另一方面, 机器人软件开发者希望尽可能重新使用他们开发的软件, 以减少他们的努力。 我们建议系统设计考虑到硬件水平的可恢复性。 为此, 我们从学习- 从观察框架开始。 这个框架代表机器人- 不可知性代表着一个目标任务, 因此代表的任务描述可以与各种机器人共享。 执行这项任务时, 有必要将机器人的不可知性描述转换为目标机器人的命令。 首先, 我们实施技能库, 机器人运动原始软件, 仅考虑机器人手, 我们认为机器人只是移动目标轨迹的载体。 如果我们想要使用同一机器人手, 技能库是可以重新使用。 其次, 我们使用通用的 IK 解算器快速转换一个机器人。 我们用两个等级的硬体, 来核查不同的机器人。