Few-shot segmentation is a challenging dense prediction task, which entails segmenting a novel query image given only a small annotated support set. The key problem is thus to design a method that aggregates detailed information from the support set, while being robust to large variations in appearance and context. To this end, we propose a few-shot segmentation method based on dense Gaussian process (GP) regression. Given the support set, our dense GP learns the mapping from local deep image features to mask values, capable of capturing complex appearance distributions. Furthermore, it provides a principled means of capturing uncertainty, which serves as another powerful cue for the final segmentation, obtained by a CNN decoder. Instead of a one-dimensional mask output, we further exploit the end-to-end learning capabilities of our approach to learn a high-dimensional output space for the GP. Our approach sets a new state-of-the-art on the PASCAL-5$^i$ and COCO-20$^i$ benchmarks, achieving an absolute gain of $+8.4$ mIoU in the COCO-20$^i$ 5-shot setting. Furthermore, the segmentation quality of our approach scales gracefully when increasing the support set size, while achieving robust cross-dataset transfer. Code and trained models are available at \url{https://github.com/joakimjohnander/dgpnet}.
翻译:微小的截面图是一项艰巨的密集预测任务,它需要将新奇的查询图像分割成一个小的附加说明的支持组,因此关键的问题是设计一种方法,将支持组的详细信息汇总起来,同时在外观和上下文上有很大的变异。为此,我们提出一个基于高山进程(GP)回归的微小截面法。根据这套支持组,我们稠密的GP从当地深层图像特征到掩码值的绘图,能够捕捉复杂的外观分布。此外,它提供了一种捕捉不确定性的原则性手段,作为CNN解码器获得的最后分割的又一个强有力的提示。我们进一步利用我们方法的端对端学习能力,为GPG学习高维输出空间。我们的方法在PASAL-5美元和CO-20美元的基准上设置了一个新的状态,在COCO-20+8.4美元中实现了绝对收益。 由CNN 20++_ixxxx 获得最后分割。我们经过培训的分类/commacal 模型的交叉转换时,在不断提高质量和升级的尺度上实现。