In this work we propose a weighted hybridizable discontinuous Galerkin method (W-HDG) for drift-diffusion problems. By using specific exponential weights when computing the $L^2$ product in each cell of the discretization, we are able to mimic the behavior of the Slotboom variables, and eliminate the drift term from the local matrix contributions, while still solving the problem for the primal variables. We show that the proposed numerical scheme is well-posed, and validate numerically that it has the same properties as classical HDG methods, including optimal convergence, and superconvergence of postprocessed solutions. For polynomial degree zero, dimension one, and vanishing HDG stabilization parameter, W-HDG coincides with the Scharfetter-Gummel finite volume scheme (i.e., it produces the same system matrix). The use of local exponential weights generalizes the Scharfetter-Gummel scheme (the state-of-the-art for finite volume discretization of transport dominated problems) to arbitrary high order approximations.
翻译:在本文中,我们提出了一种加权杂交不连续Galerkin方法(W-HDG)来解决漂移扩散问题。通过在离散化的每个单元格中使用特定的指数权重来计算$L^2$乘积,我们能够模拟Slotboom变量的行为,并消除局部矩阵贡献中的漂移项,同时仍然解决原始变量的问题。我们展示了所提出的数值方案是良定义的,并通过数值验证它具有与经典HDG方法相同的性质,包括最优收敛性和后处理解的超收敛性。对于零次多项式、一维空间和消失的HDG稳定化参数,W-HDG与Scharfetter-Gummel有限体积方案(即它产生相同的系统矩阵)重合。使用局部指数权重将Scharfetter-Gummel方案(处理输运主导问题的有限体积离散化的最新技术)推广到任意高阶逼近。