We introduce a novel multi-resolution Localized Orthogonal Decomposition (LOD) for time-harmonic acoustic scattering problems that can be modeled by the Helmholtz equation. The method merges the concepts of LOD and operator-adapted wavelets (gamblets) and proves its applicability for a class of complex-valued, non-hermitian and indefinite problems. It computes hierarchical bases that block-diagonalize the Helmholtz operator and thereby decouples the discretization scales. Sparsity is preserved by a novel localization strategy that improves stability properties even in the elliptic case. We present a rigorous stability and a-priori error analysis of the proposed method for homogeneous media. In addition, we investigate the fast solvability of the blocks by a standard iterative method. A sequence of numerical experiments illustrates the sharpness of the theoretical findings and demonstrates the applicability to scattering problems in heterogeneous media.
翻译:我们引入了新型的多分辨率本地化矫形分解(LOD), 以时间- 调和声学分散问题为模型, 可以通过 Helmholtz 方程式进行模拟。 该方法将LOD 和操作员适应的波子( gamblets) 的概念合并, 并证明它适用于一组复杂、 非希腊和无限期的问题。 它计算了块对齐的分解操作员进行分解从而解开离散尺度的等级基础 。 一种新的本地化战略可以改善超离子体的稳定性。 我们对拟采用的同质媒体方法进行了严格的稳定性和优先误差分析。 此外, 我们用标准的迭接方法调查区块的快速可溶性。 数字实验的顺序显示了理论结论的清晰性, 并展示了对多种介质中分散问题的适用性 。