We develop a novel, general and computationally efficient framework, called Divide and Conquer Dynamic Programming (DCDP), for localizing change points in time series data with high-dimensional features. DCDP deploys a class of greedy algorithms that are applicable to a broad variety of high-dimensional statistical models and can enjoy almost linear computational complexity. We investigate the performance of DCDP in three commonly studied change point settings in high dimensions: the mean model, the Gaussian graphical model, and the linear regression model. In all three cases, we derive non-asymptotic bounds for the accuracy of the DCDP change point estimators. We demonstrate that the DCDP procedures consistently estimate the change points with sharp, and in some cases, optimal rates while incurring significantly smaller computational costs than the best available algorithms. Our findings are supported by extensive numerical experiments on both synthetic and real data.
翻译:我们开发了一个创新的、通用的和计算效率高的框架,称为“分化和征服动态编程”(DCDP),用于在具有高维特征的时间序列数据中将变化点本地化。DCDP部署了一系列贪婪的算法,这些算法适用于范围广泛的多种高维统计模型,并可能具有几乎线性计算的复杂性。我们用三个共同研究的高维变化点设置来调查DCDP的性能:平均模型、高西亚图形模型和线性回归模型。在这三个例子中,我们为DCDP变更点估计器的准确性得出了非被动的界限。我们证明,DCDP程序始终对变化点进行精确的估算,有时是最佳的计算率,同时比现有最佳的算法成本要低得多。我们在合成和真实数据上进行大量的数字实验,支持我们的调查结果。