We study the set of optimal solutions of the dual linear programming formulation of the linear assignment problem (LAP) to propose a method for computing a solution from the relative interior of this set. Assuming that an arbitrary dual-optimal solution and an optimal assignment are available (for which many efficient algorithms already exist), our method computes a relative-interior solution in linear time. Since LAP occurs as a subproblem in the linear programming relaxation of quadratic assignment problem (QAP), we employ our method as a new component in the family of dual-ascent algorithms that provide bounds on the optimal value of QAP. To make our results applicable to incomplete QAP, which is of interest in practical use-cases, we also provide a linear-time reduction from incomplete LAP to complete LAP along with a mapping that preserves optimality and membership in the relative interior. Our experiments on publicly available benchmarks indicate that our approach with relative-interior solution is frequently capable of providing superior bounds and otherwise is at least comparable.
翻译:我们研究了线性派任问题双线性编程配方的一套最佳解决办法,以提出一种方法,从这一套线性派任问题的相对内部计算出一种解决办法。假设存在一种任意的双重最佳解决办法和最佳派任(已经存在许多有效的算法),我们的方法在线性时间计算出一种相对内部的解决方法。由于LAP是线性派任问题线性编程松动的一个次要问题,我们用我们的方法作为双向派任方算法的新组成部分,为QAP的最佳值提供界限。为了使我们的结果适用于不完全的QAP(对实际使用情况有利),我们还提供了线性时间缩短,从不完全的LAP到完成LAP,同时绘制地图,保持相对内部的最佳性和成员资格。我们关于可公开使用的基准的实验表明,我们具有相对内部解决办法的方法往往能够提供更优越的界限,其他方法则最不具有可比性。