Point cloud semantic segmentation is a crucial task in 3D scene understanding. Existing methods mainly focus on employing a large number of annotated labels for supervised semantic segmentation. Nonetheless, manually labeling such large point clouds for the supervised segmentation task is time-consuming. In order to reduce the number of annotated labels, we propose a semi-supervised semantic point cloud segmentation network, named SSPC-Net, where we train the semantic segmentation network by inferring the labels of unlabeled points from the few annotated 3D points. In our method, we first partition the whole point cloud into superpoints and build superpoint graphs to mine the long-range dependencies in point clouds. Based on the constructed superpoint graph, we then develop a dynamic label propagation method to generate the pseudo labels for the unsupervised superpoints. Particularly, we adopt a superpoint dropout strategy to dynamically select the generated pseudo labels. In order to fully exploit the generated pseudo labels of the unsupervised superpoints, we furthermore propose a coupled attention mechanism for superpoint feature embedding. Finally, we employ the cross-entropy loss to train the semantic segmentation network with the labels of the supervised superpoints and the pseudo labels of the unsupervised superpoints. Experiments on various datasets demonstrate that our semi-supervised segmentation method can achieve better performance than the current semi-supervised segmentation method with fewer annotated 3D points. Our code is available at https://github.com/MMCheng/SSPC-Net.
翻译:在 3D 场景理解中, 云层断层是一个关键任务 。 现有方法主要侧重于使用大量附加说明的标签, 用于监管的语义分割。 尽管如此, 手工为受监管的分层任务贴上这样的大点云是耗时的。 为了减少附加说明的标签数量, 我们建议使用半监督的语义点云分割网络, 名为 SSPC- Net, 我们通过从几个附加说明的 3D 点中推断出未标记点的标签, 来培训语义分割网络。 在我们的方法中, 我们首先将整个点云分成为超级点分隔, 并构建超级点图, 以在点分隔点分割任务中清除长期依赖的云层。 根据构建的超级点图, 我们然后开发一个动态标签传播方法, 为未受监管的超级点分割点创建假标签。 特别是, 我们采用超点丢弃策略, 动态地选择生成的假标签。 为了充分利用未经监管的超级点生成的伪标签, 我们进一步提议在超点的网络中进行不相连接的尾部的尾部路段运行, 。 最后使用一个匹配的尾部路段的标签路段数据将显示的尾部的尾部路段的尾部路段数据。