Transfer learning from synthetic to real data has been proved an effective way of mitigating data annotation constraints in various computer vision tasks. However, the developments focused on 2D images but lag far behind for 3D point clouds due to the lack of large-scale high-quality synthetic point cloud data and effective transfer methods. We address this issue by collecting SynLiDAR, a synthetic LiDAR point cloud dataset that contains large-scale point-wise annotated point cloud with accurate geometric shapes and comprehensive semantic classes, and designing PCT-Net, a point cloud translation network that aims to narrow down the gap with real-world point cloud data. For SynLiDAR, we leverage graphic tools and professionals who construct multiple realistic virtual environments with rich scene types and layouts where annotated LiDAR points can be generated automatically. On top of that, PCT-Net disentangles synthetic-to-real gaps into an appearance component and a sparsity component and translates SynLiDAR by aligning the two components with real-world data separately. Extensive experiments over multiple data augmentation and semi-supervised semantic segmentation tasks show very positive outcomes - including SynLiDAR can either train better models or reduce real-world annotated data without sacrificing performance, and PCT-Net translated data further improve model performance consistently.


翻译:事实证明,从合成数据向实际数据转移学习是减轻各种计算机愿景任务的数据注释限制的有效方法,然而,由于缺乏大规模高质量的合成云数据和有效的传输方法,以2D图像为重点,但在3D点云方面却远远落后于3D点云层。我们通过收集合成的LiDAR点云数据集SynLiDAR来解决这一问题,该数据集包含一个具有精确几何形状和全面语义分类的、带有大量点点度附加值云,并设计了PCT-网络,这是一个点云转换网络,目的是缩小与真实世界云数据的差距。对于SynLiDAR来说,我们利用图形工具和专业人员来建立多种现实的虚拟环境,这些环境具有丰富的场景类型和布局,可以自动生成附加说明的LIDAR点。此外,PCT-Net将合成-现实差距分解成一个大型的外观组成部分和音频部分,并将SyLiDAR翻译成,将两个组成部分与真实世界数据分开。在多个数据扩增和半超超度的断层数据模型上进行广泛的实验,并且不断改进的运行结果,包括不断改进的数据。

0
下载
关闭预览

相关内容

根据激光测量原理得到的点云,包括三维坐标(XYZ)和激光反射强度(Intensity)。 根据摄影测量原理得到的点云,包括三维坐标(XYZ)和颜色信息(RGB)。 结合激光测量和摄影测量原理得到点云,包括三维坐标(XYZ)、激光反射强度(Intensity)和颜色信息(RGB)。 在获取物体表面每个采样点的空间坐标后,得到的是一个点的集合,称之为“点云”(Point Cloud)
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
147+阅读 · 2019年10月27日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
158+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Deep Learning for 3D Point Clouds: A Survey
Arxiv
3+阅读 · 2019年12月27日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员