Many existing deep neural networks (DNNs) for 3D point cloud semantic segmentation require a large amount of fully labeled training data. However, manually assigning point-level labels on the complex scenes is time-consuming. While unlabeled point clouds can be easily obtained from sensors or reconstruction, we propose a superpoint constrained semi-supervised segmentation network for 3D point clouds, named as SCSS-Net. Specifically, we use the pseudo labels predicted from unlabeled point clouds for self-training, and the superpoints produced by geometry-based and color-based Region Growing algorithms are combined to modify and delete pseudo labels with low confidence. Additionally, we propose an edge prediction module to constrain the features from edge points of geometry and color. A superpoint feature aggregation module and superpoint feature consistency loss functions are introduced to smooth the point features in each superpoint. Extensive experimental results on two 3D public indoor datasets demonstrate that our method can achieve better performance than some state-of-the-art point cloud segmentation networks and some popular semi-supervised segmentation methods with few labeled scenes.


翻译:用于 3D 点云 语义分割的许多现有的深线神经网络(DNNs) 需要大量的全标签培训数据。 然而, 人工在复杂场景上分配点级标签很费时。 虽然从传感器或重建中很容易获得未贴标签的点云, 我们提议为 3D 点云建立一个超点限制半监督分离网络, 称为 SCSS- Net 。 具体地说, 我们使用从未贴标签点云中预测的假标签进行自我培训, 而基于几何和基于颜色的区域增长算法产生的超级点会合在一起, 来修改和删除假标签。 此外, 我们提议了一个边缘预测模块, 以限制地理测量和颜色边缘点的特征。 一个超级点集成模块和超级点特征一致性丧失功能, 以平滑每个超级点的点特征。 两个 3D 公共室内数据集的广泛实验结果显示, 我们的方法比一些基于状态的云分分割网络和一些广受欢迎的半监视的分区方法更能达到效果。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
深度强化学习策略梯度教程,53页ppt
专知会员服务
180+阅读 · 2020年2月1日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
【泡泡一分钟】Matterport3D: 从室内RGBD数据集中训练 (3dv-22)
泡泡机器人SLAM
16+阅读 · 2017年12月31日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
VIP会员
相关VIP内容
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
深度强化学习策略梯度教程,53页ppt
专知会员服务
180+阅读 · 2020年2月1日
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
【泡泡一分钟】Matterport3D: 从室内RGBD数据集中训练 (3dv-22)
泡泡机器人SLAM
16+阅读 · 2017年12月31日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Top
微信扫码咨询专知VIP会员