Dimensionality reduction (DR) plays a vital role in the visual analysis of high-dimensional data. One main aim of DR is to reveal hidden patterns that lie on intrinsic low-dimensional manifolds. However, DR often overlooks important patterns when the manifolds are distorted or masked by certain influential data attributes. This paper presents a feature learning framework, FEALM, designed to generate a set of optimized data projections for nonlinear DR in order to capture important patterns in the hidden manifolds. These projections produce maximally different nearest-neighbor graphs so that resultant DR outcomes are significantly different. To achieve such a capability, we design an optimization algorithm as well as introduce a new graph dissimilarity measure, named neighbor-shape dissimilarity. Additionally, we develop interactive visualizations to assist comparison of obtained DR results and interpretation of each DR result. We demonstrate FEALM's effectiveness through experiments and case studies using synthetic and real-world datasets.
翻译:在对高维数据进行视觉分析时,多维度减低(DR)在高维数据的视觉分析中发挥着关键作用。 DR的一个主要目的是揭示内在低维元的隐藏模式。 但是, DR往往忽略了当元体被某些有影响的数据属性扭曲或遮盖时的重要模式。 本文展示了一个特征学习框架, FEALM, 旨在为非线性DR产生一套优化的数据预测, 以捕捉隐藏元体的重要模式。 这些预测产生极为不同的近邻图形, 从而导致DR的结果大相径庭。 为了实现这种能力, 我们设计了一种优化算法, 并引入了一种新的图异度度测量方法, 名为邻居相形形形形色不同。 此外, 我们开发了互动的可视化功能, 以协助比较所获得的DR结果和对每项DR结果的解释。 我们通过使用合成和真实世界数据集进行实验和案例研究, 证明了FEALM的有效性。