With the rapid development of online payment platforms, it is now possible to record massive transaction data. Clustering on transaction data significantly contributes to analyzing merchants' behavior patterns. This enables payment platforms to provide differentiated services or implement risk management strategies. However, traditional methods exploit transactions by generating low-dimensional features, leading to inevitable information loss. In this study, we use the empirical cumulative distribution of transactions to characterize merchants. We adopt Wasserstein distance to measure the dissimilarity between any two merchants and propose the Wasserstein-distance-based spectral clustering (WSC) approach. Based on the similarities between merchants' transaction distributions, a graph of merchants is generated. Thus, we treat the clustering of merchants as a graph-cut problem and solve it under the framework of spectral clustering. To ensure feasibility of the proposed method on large-scale datasets with limited computational resources, we propose a subsampling method for WSC (SubWSC). The associated theoretical properties are investigated to verify the efficiency of the proposed approach. The simulations and empirical study demonstrate that the proposed method outperforms feature-based methods in finding behavior patterns of merchants.


翻译:随着在线支付平台的迅速发展,现在有可能记录大量交易数据。交易数据集中化极大地有助于分析商人的行为模式。这使得支付平台能够提供有区别的服务或实施风险管理战略。然而,传统方法利用交易,产生低维特征,导致不可避免的信息损失。在这项研究中,我们利用交易的累积累积经验分布来给商人定性。我们采用瓦塞斯坦距离来测量任何两个商人之间的差异,并提出瓦塞斯坦光谱聚集法。根据商家交易分布的相似之处,制作了一个商人图表。因此,我们把商人聚在一起当作一个图表问题,在光谱集的框架内加以解决。为了确保利用有限的计算资源建立大型数据集的拟议方法的可行性,我们建议了WSC(SubWSC)的次级抽样方法。对相关的理论特性进行了调查,以核实拟议方法的效率。模拟和经验研究表明,拟议的方法在寻找商业行为模式时,其特征方法优于功能。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Arxiv
20+阅读 · 2021年9月22日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员