Sparseness and robustness are two important properties for many machine learning scenarios. In the present study, regarding the maximum correntropy criterion (MCC) based robust regression algorithm, we investigate to integrate the MCC method with the automatic relevance determination (ARD) technique in a Bayesian framework, so that MCC-based robust regression could be implemented with adaptive sparseness. To be specific, we use an inherent noise assumption from the MCC to derive an explicit likelihood function, and realize the maximum a posteriori (MAP) estimation with the ARD prior by variational Bayesian inference. Compared to the existing robust and sparse L1-regularized MCC regression, the proposed MCC-ARD regression can eradicate the troublesome tuning for the regularization hyper-parameter which controls the regularization strength. Further, MCC-ARD achieves superior prediction performance and feature selection capability than L1-regularized MCC, as demonstrated by a noisy and high-dimensional simulation study.
翻译:对于许多机器学习情景来说,偏差和稳健性是两个重要特性。在本研究中,关于基于最大可伦性标准(MCC)的稳健回归算法,我们调查如何将CCC方法与自动相关性确定(ARD)技术结合到巴伊西亚框架中,以便基于CCC的稳健回归法能够以适应性稀疏的方式实施。具体地说,我们使用CCC的内在噪音假设来得出明确的概率功能,并用变异的Bayesian 推断法实现与ARD之前的事后(MAP)的最大估计。与现有的稳健和稀疏的L1常规化中枢回归法相比,拟议的CC-ARD回归法可以消除控制正规化强度的正规化超立方计的麻烦调整。此外,CCC-ARD比L1常规化的MCC取得优的预测性能和特征选择能力,这从噪音和高维度模拟研究中得到证明。