Normalized random measures with independent increments represent a large class of Bayesian nonaprametric priors and are widely used in the Bayesian nonparametric framework. In this paper, we provide the posterior consistency analysis for normalized random measures with independent increments (NRMIs) through the corresponding Levy intensities used to characterize the completely random measures in the construction of NRMIs. Assumptions are introduced on the Levy intensities to analyze the posterior consistency of NRMIs and are verified with multiple interesting examples. A focus of the paper is the Bernstein-von Mises theorem for the normalized generalized gamma process (NGGP) when the true distribution of the sample is discrete or continuous. When the Bernstein-von Mises theorem is applied to construct credible sets, in addition to the usual form there will be an additional bias term on the left endpoint closely related to the number of atoms of the true distribution when it is discrete. We also discuss the affect of the estimators for the model parameters of the NGGP under the Bernstein-von Mises convergences. Finally, to further explain the necessity of adding the bias correction in constructing credible sets, we illustrate numerically how the bias correction affects the coverage of the true value by the credible sets when the true distribution is discrete.
翻译:规范化随机测度具有独立增量,是一类广泛应用于贝叶斯非参数方法中的贝叶斯非参数先验。本文通过用于表征规范化随机测度中完全随机测度的 Lévy 强度,提供了规范化随机测度的后验收敛性分析。引入假设用于分析规范化随机测度的后验收敛性,并且在多个有趣的例子中得到验证。文中重点是关于范数广义伽玛过程 (NGGP) 的 Bernstein-von Mises 定理,当样本真实分布是离散或连续的时候。当Bernstein-von Mises定理用于构建可信集时,除了通常形式之外,当真实分布是离散的时,左端点上会有一个与真实分布的原子数紧密相关的附加偏差项。我们还讨论了NGGP模型参数估计器在Bernstein-von Mises收敛下的影响。最后,为了进一步解释构建可信区间时添加偏差校正的必要性,我们通过数值演示了偏差校正对真实分布为离散型时可信区间涵盖真实值的影响。