When data is collected in an adaptive manner, even simple methods like ordinary least squares can exhibit non-normal asymptotic behavior. As an undesirable consequence, hypothesis tests and confidence intervals based on asymptotic normality can lead to erroneous results. We propose a family of online debiasing estimators to correct these distributional anomalies in least squares estimation. Our proposed methods take advantage of the covariance structure present in the dataset and provide sharper estimates in directions for which more information has accrued. We establish an asymptotic normality property for our proposed online debiasing estimators under mild conditions on the data collection process and provide asymptotically exact confidence intervals. We additionally prove a minimax lower bound for the adaptive linear regression problem, thereby providing a baseline by which to compare estimators. There are various conditions under which our proposed estimators achieve the minimax lower bound. We demonstrate the usefulness of our theory via applications to multi-armed bandit, autoregressive time series estimation, and active learning with exploration.
翻译:在数据采集具有自适应性时,即使是普通最小二乘法也可能表现出非正态的渐进行为。不良后果是,基于渐进正常性的假设检验和置信区间可能导致错误的结果。我们提出了一族在线去偏估计器,用于在最小二乘估计中纠正这些分布异常。我们提出的方法利用数据集中存在的协方差结构,在信息累积更多的方向上提供更锐利的估计。我们在数据收集过程的温和条件下建立了我们提出的在线去偏估计器的渐进正常性属性,并提供了渐进精确的置信区间。我们额外证明了自适应线性回归问题的最小化下界,从而提供了一个基准来比较估计器。有各种条件使我们提出的估计器达到最小化下界。我们通过应用于多臂赌博机、自回归时间序列估计和带探索的主动学习来展示我们理论的实用性。