Video enhancement is a challenging problem, more than that of stills, mainly due to high computational cost, larger data volumes and the difficulty of achieving consistency in the spatio-temporal domain. In practice, these challenges are often coupled with the lack of example pairs, which inhibits the application of supervised learning strategies. To address these challenges, we propose an efficient adversarial video enhancement framework that learns directly from unpaired video examples. In particular, our framework introduces new recurrent cells that consist of interleaved local and global modules for implicit integration of spatial and temporal information. The proposed design allows our recurrent cells to efficiently propagate spatio-temporal information across frames and reduces the need for high complexity networks. Our setting enables learning from unpaired videos in a cyclic adversarial manner, where the proposed recurrent units are employed in all architectures. Efficient training is accomplished by introducing one single discriminator that learns the joint distribution of source and target domain simultaneously. The enhancement results demonstrate clear superiority of the proposed video enhancer over the state-of-the-art methods, in all terms of visual quality, quantitative metrics, and inference speed. Notably, our video enhancer is capable of enhancing over 35 frames per second of FullHD video (1080x1920).
翻译:视频增强是一个挑战性的问题,主要是由于计算成本高、数据量大和难以在时空空间领域实现一致性的困难,因此,视频增强是一个挑战性的问题,比静态更具有挑战性的问题,主要是由于计算成本高、数据量大以及难以在时空空间领域实现一致性。在实践中,这些挑战往往与缺乏范例配对相结合,从而抑制了受监督的学习战略的应用。为了应对这些挑战,我们提议了一个高效的对抗性视频强化框架,直接从未受重视的视频实例中学习。特别是,我们的框架引入了新的经常性单元格,由不同的地方和全球模块组成,以隐含地整合空间和时间信息。拟议的设计使我们的经常性单元格能够高效率地在框架之间传播spastio-时空信息,并减少对高复杂网络的需求。我们的设置使得能够以循环对抗的方式从未受忽视的视频中学习,从而抑制了对受监督的学习战略的学习。为了应对这些挑战,我们建议的所有结构结构都采用了一种高效的对抗性视频强化框架。通过引入一个单一的区分器,同时学习源和目标域的联合分布。增强结果表明,拟议的视频增强器明显优于最新技术方法,而不是在视觉质量、定量测量度80度和全速(10)的视频增强了我们超过35的视频框架的图像。