We prove rigorous bounds on the errors resulting from the approximation of the incompressible Navier-Stokes equations with (extended) physics informed neural networks. We show that the underlying PDE residual can be made arbitrarily small for tanh neural networks with two hidden layers. Moreover, the total error can be estimated in terms of the training error, network size and number of quadrature points. The theory is illustrated with numerical experiments.
翻译:我们用(延伸的)物理知情神经网络来证明无法压缩的纳维埃-斯托克斯方程式的近似误差与(扩展的)物理学知情神经网络的误差的严格界限。 我们证明,潜在的PDE残留物可以被两层隐蔽的地表神经网络任意地缩小。 此外,总误差可以用培训误差、网络大小和二次点数来估计。 理论用数字实验来说明。