Graph neural network (GNN) is a promising approach to learning and predicting physical phenomena described in boundary value problems, such as partial differential equations (PDEs) with boundary conditions. However, existing models inadequately treat boundary conditions essential for the reliable prediction of such problems. In addition, because of the locally connected nature of GNNs, it is difficult to accurately predict the state after a long time, where interaction between vertices tends to be global. We present our approach termed physics-embedded neural networks that considers boundary conditions and predicts the state after a long time using an implicit method. It is built based on an E(n)-equivariant GNN, resulting in high generalization performance on various shapes. We demonstrate that our model learns flow phenomena in complex shapes and outperforms a well-optimized classical solver and a state-of-the-art machine learning model in speed-accuracy trade-off. Therefore, our model can be a useful standard for realizing reliable, fast, and accurate GNN-based PDE solvers. The code is available at https://github.com/yellowshippo/penn-neurips2022.


翻译:图神经网络 (GNN) 是一种有前途的方法,用于学习和预测边值问题中描述的物理现象,例如带有边界条件的偏微分方程 (PDE)。然而,现有模型对于可靠预测此类问题所必需的边界条件处理不充分。此外,由于 GNN 的局部连接性质,难以准确预测长时间后的状态,其中顶点之间的相互作用往往是全局的。我们提出了一种基于 E(n)-等变 GNN 的方法,称之为物理嵌入式神经网络,它考虑了边界条件,并使用隐式方法预测了长时间后的状态。它基于 E(n)-等变 GNN 构建,因此在各种形状上具有高度的泛化性能。我们证明了我们的模型可以在复杂形状中学习流动现象,并在速度精度平衡方面优于经过优化的传统求解器和最先进的机器学习模型。因此,我们的模型可以成为可靠、快速、准确的 GNN PDE 求解器的有用标准。代码可从 https://github.com/yellowshippo/penn-neurips2022 获取。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
【ICML2020】持续图神经网络,Continuous Graph Neural Networks
专知会员服务
146+阅读 · 2020年6月28日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
22+阅读 · 2022年3月31日
Arxiv
12+阅读 · 2021年5月3日
Arxiv
37+阅读 · 2021年2月10日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
23+阅读 · 2018年10月24日
VIP会员
相关VIP内容
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
【ICML2020】持续图神经网络,Continuous Graph Neural Networks
专知会员服务
146+阅读 · 2020年6月28日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关论文
Arxiv
12+阅读 · 2022年11月21日
Arxiv
22+阅读 · 2022年3月31日
Arxiv
12+阅读 · 2021年5月3日
Arxiv
37+阅读 · 2021年2月10日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
23+阅读 · 2018年10月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员