We consider the approximation of a class of dynamic partial differential equations (PDE) of second order in time by the physics-informed neural network (PINN) approach, and provide an error analysis of PINN for the wave equation, the Sine-Gordon equation and the linear elastodynamic equation. Our analyses show that, with feed-forward neural networks having two hidden layers and the $\tanh$ activation function, the PINN approximation errors for the solution field, its time derivative and its gradient field can be effectively bounded by the training loss and the number of training data points (quadrature points). Our analyses further suggest new forms for the training loss function, which contain certain residuals that are crucial to the error estimate but would be absent from the canonical PINN loss formulation. Adopting these new forms for the loss function leads to a variant PINN algorithm. We present ample numerical experiments with the new PINN algorithm for the wave equation, the Sine-Gordon equation and the linear elastodynamic equation, which show that the method can capture the solution well.


翻译:我们考虑采用物理知识驱动的神经网络 (PINN) 方法来近似一类二阶动态偏微分方程,并提供了对波动方程、正弦戈登方程和线性弹性动力学方程的 PINN 误差分析。我们的分析表明,使用具有两个隐藏层和 $\tanh$ 激活函数的前馈神经网络,PINN 的解场、其时间导数和其梯度场的近似误差可以被训练损失和训练数据点数 (积分点) 有效地限制。我们的分析进一步提出了新的损失函数形式,其中包含了某些关键残差,这些残差对误差估计至关重要,但在经典的 PINN 损失函数公式中将被忽略。采用这些新的损失函数形式可导出 PINN 算法变体。我们对波动方程、正弦戈登方程和线性弹性动力学方程进行了大量数值实验,结果表明该方法可以很好地捕捉解的特征。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
70+阅读 · 2022年6月28日
【2022新书】谱图理论,Spectral Graph Theory,100页pdf
专知会员服务
72+阅读 · 2022年4月15日
【AAAI 2022】神经分段常时滞微分方程
专知会员服务
33+阅读 · 2022年1月14日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
81+阅读 · 2021年12月9日
专知会员服务
50+阅读 · 2020年12月14日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
40+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月12日
Arxiv
0+阅读 · 2023年5月10日
Arxiv
13+阅读 · 2021年5月25日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
70+阅读 · 2022年6月28日
【2022新书】谱图理论,Spectral Graph Theory,100页pdf
专知会员服务
72+阅读 · 2022年4月15日
【AAAI 2022】神经分段常时滞微分方程
专知会员服务
33+阅读 · 2022年1月14日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
81+阅读 · 2021年12月9日
专知会员服务
50+阅读 · 2020年12月14日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
40+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员