The extraction of text information in videos serves as a critical step towards semantic understanding of videos. It usually involved in two steps: (1) text recognition and (2) text classification. To localize texts in videos, we can resort to large numbers of text recognition methods based on OCR technology. However, to our knowledge, there is no existing work focused on the second step of video text classification, which will limit the guidance to downstream tasks such as video indexing and browsing. In this paper, we are the first to address this new task of video text classification by fusing multimodal information to deal with the challenging scenario where different types of video texts may be confused with various colors, unknown fonts and complex layouts. In addition, we tailor a specific module called CorrelationNet to reinforce feature representation by explicitly extracting layout information. Furthermore, contrastive learning is utilized to explore inherent connections between samples using plentiful unlabeled videos. Finally, we construct a new well-defined industrial dataset from the news domain, called TI-News, which is dedicated to building and evaluating video text recognition and classification applications. Extensive experiments on TI-News demonstrate the effectiveness of our method.


翻译:视频中文本信息的提取是了解视频语义的关键一步,通常涉及两个步骤:(1) 文本识别和(2) 文本分类。为使视频文本本地化,我们可以借助基于OCR技术的大量文本识别方法。然而,据我们所知,目前没有侧重于视频文本分类第二步的现有工作,这将限制对视频索引和浏览等下游任务的指导。在本文件中,我们首先通过使用多式联运信息处理视频文本分类这一新的任务,处理具有挑战性的情况,即不同种类的视频文本可能与不同颜色、未知字体和复杂布局混淆。此外,我们设计了一个名为CorrelegalNet的具体模块,通过明确提取布局信息加强特征代表。此外,利用对比性学习来探索样本之间的内在联系,使用细微的无标签视频进行。最后,我们从新闻领域建立了一个新的定义明确的工业数据集,称为TI-News,专门建设和评估视频文本识别和分类应用。关于TI-News的大规模实验展示了我们的方法的有效性。

0
下载
关闭预览

相关内容

文本分类(Text Classification)任务是根据给定文档的内容或主题,自动分配预先定义的类别标签。
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Classification via score-based generative modelling
Arxiv
0+阅读 · 2022年7月22日
Arxiv
16+阅读 · 2020年5月20日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
Arxiv
12+阅读 · 2018年9月15日
Arxiv
11+阅读 · 2018年1月18日
VIP会员
相关VIP内容
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关论文
Classification via score-based generative modelling
Arxiv
0+阅读 · 2022年7月22日
Arxiv
16+阅读 · 2020年5月20日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
Arxiv
12+阅读 · 2018年9月15日
Arxiv
11+阅读 · 2018年1月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员