项目名称: 微量元素(Ti、Zr、C)对核聚变堆钨基材料的强韧化及机理研究

项目编号: No.51301164

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 一般工业技术

项目作者: 刘瑞

作者单位: 中国科学院合肥物质科学研究院

项目金额: 25万元

中文摘要: 核聚变堆的开发要求面向等离子体钨基材料具有良好的室温韧性、高温强度、高的再结晶温度以及优越的抗辐照性能。然而,纯钨存在低温脆性、再结晶脆性、辐照脆化等缺点。其中,引起钨低温脆性的主要原因是O、C、N等杂质元素偏聚在晶界形成脆化层膜,造成晶界结合强度降低,从而导致晶间脆断。因此,如何调控钨晶界中杂质元素的分布、存在形态,净化与强化晶界,减少间隙杂质原子对晶界的脆化作用,是提高钨基材料力学性能的关键。对此,本项目将采用放电等离子烧结或微波烧结法制备W-Ti-Zr-C系块体合金,研究微量合金元素Zr、Ti等对钨中的O、N、C等间隙杂质原子的分布及存在形态的调控作用,以及对钨基材料力学性能的影响机制,特别关注晶界杂质含量对力学性能的影响规律以及Zr和Ti添加的晶界的净化和强化作用。项目研究成果将为高性能钨基材料的开发提供科学依据。

中文关键词: 钨;晶界强化;弥散强化;面向等离子体材料;力学性能

英文摘要: The development of fusion requires that tungsten-based plasma facing materials (PFM) have high performance, such as high room temperature toughness, high temperature strength, high recrystallization temperature and good irradiation resistance. However, pure tungsten exhibits severe embrittlement in several aspects, including room temperature brittleness, recrystallization brittleness and irradiation-induced brittleness. The low temperature brittleness of tungsten is strongly related to the segregation of trace interstitial impurity elements (O, C, N) on grain boundaries, which forms brittle membrane layer and decreases the bonding strength of grains, and thus results in brittle fracture. Therefore, controlling the distribution and forms of interstitial impurity elements (C, N, O), and strengthening grain boundaries become key points of improving mechanical properties of tungsten.?Therefore, in this project, the W-Zr-Ti-C alloys will be synthesized by spark plasma syntering method and/or microwave sintering method, the interaction between micro-alloying elements (Ti, Zr) and interstitial impurity elements (O, C, N), and the effect of micro-alloying on mechanical properties of tungsten and its mechanism would be studied. More specially, the influence of impurities in the grain boundaries on the mechanical properti

英文关键词: tungsten;grain-boundary strengthening;dispersion strengthening;plasma facing materials;mechanical properties

成为VIP会员查看完整内容
0

相关内容

严新平院士:智能交通发展的现状、挑战与展望
专知会员服务
30+阅读 · 2022年3月17日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
12+阅读 · 2021年8月8日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
51+阅读 · 2020年12月28日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月16日
Arxiv
46+阅读 · 2021年10月4日
小贴士
相关主题
相关VIP内容
严新平院士:智能交通发展的现状、挑战与展望
专知会员服务
30+阅读 · 2022年3月17日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
12+阅读 · 2021年8月8日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
51+阅读 · 2020年12月28日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员