In this paper, we propose new self-tuned robust estimators for estimating the mean of distributions with only finite variances. Our method involves introducing a new loss function that considers both the mean parameter and a robustification parameter. By simultaneously optimizing the empirical loss function with respect to both parameters, the resulting estimator for the robustification parameter can adapt to the unknown variance automatically and can achieve near-optimal finite-sample performance. Our approach outperforms previous methods in terms of both computational and asymptotic efficiency. Specifically, it does not require cross-validation or Lepski's method to tune the robustification parameter, and the variance of our estimator achieves the Cram\'er-Rao lower bound.
翻译:暂无翻译