项目名称: 特殊图的整数流及群连通性问题的研究
项目编号: No.11501256
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 数理科学和化学
项目作者: 杨帆
作者单位: 江苏科技大学
项目金额: 18万元
中文摘要: Tutte在研究四色问题时引入整数流理论,提出了著名的3-流猜想。1992年,Jaeger等人推广整数流概念得到了群连通理论,并提出了相应的群连通猜想。到目前为止,上述猜想均未得到解决,但是关于特殊图类的整数流、群连通性问题的研究一直都很活跃。本项目拟从群论的角度研究点传递图的整数3-流问题,拟证明3-流猜想对于点传递图是成立的;通过定义剖点、加三角形等构造新图的方法以保证团划分的相关性质来研究线图的整数流和群连通性问题。除此之外,本项目还将围绕着Bouchet关于符号图的6-流猜想展开研究,对符号图的处处非零k-流问题进行研究。
中文关键词: 整数流;点传递图;凯莱图;线图;符号图
英文摘要: Tutte introduced the theory of nowhere-zero flows as a tool to attack the four color problem and proposed the famous 3-flow conjecture. In 1992, Jaeger et al. generalized the nowhere-zero flows into group connectivity. Moreover, Jaeger et al. proposed the corresponding group connectivity conjecture. Up to now, 3-flow conjecture and related group connectivity conjectures are still open, but the related research of integer flow and group connectivity continues, especially for the special graphs. We will study nowhere-zero 3-flows of vertex transitive graphs via group theory and try to prove that 3-flow conjecture holds on vertex transitive graphs; study nowhere-zero flows and group connectivity of line graph by constructing new graph in terms of splitting vertex and adding triangle. Moreover, we also focus nowhere-zero k-flow on singed graphs in order to solve Bouchet's 6-flow conjecture.
英文关键词: integer flow;vertex transitive graph;Cayley graph;line graph;signed graph